
DisasterLens
Team 5 May 9, 2025



About Us
Our Project
AI Model
Backend
Frontend

Team 5 May 9, 2025

APPENDIX



Meet the Team

Ashish Das
Team Lead & Scrum Master

Team 5 May 9, 2025

Phong
AI Development

Jiwoo
Front-end developer



Meet the Team

Anish
Front-end Developer

Team 5 May 9, 2025

Uday
Backend Developer

Antony
Backend Developer



Business ContextTeam 5 May 9, 2025

● Business Problem:
- Disaster events evolve in real time, yet traditional news outlets deliver delayed, fragmented reports.

- Emergency teams lack timely, consolidated information, impeding rapid decision-making and resource 

allocation.

● Objective:
- Deploy a fully automated platform analyzing live Bluesky data.

- Instantly deliver precise disaster alerts and visualizations to support swift, data-driven crisis response.



Project Setup & FeaturesTeam 5 May 9, 2025

● Real-time data ingestion

● Advanced NLP classification

● Geospatial & urgency extraction

● Interactive visualization



Project Key RisksTeam 5 May 9, 2025

● Data quality & noise

● API limitations

● Scalability & performance

● Regulatory & privacy

● Model generalization



The Core AI

Team 5 May 9, 2025



AI Model
Overview

Team 5 May 9, 2025

This diagram shows 
the overall workflow: 
We take noisy social 
media text, process 
it using RoBERTa 
enhanced with key 
techniques, and 
output a classified 
disaster type.



Structure & 
Algorithm

Team 5 May 9, 2025

Here we detail the core techniques: 
Text preprocessing cleans the data, 
weighted loss addresses class 
imbalance, data augmentation 
increases robustness, and Optuna 
optimizes the final RoBERTa model 
training.



Backend 
Architecture & 

Data 

Team 5 May 9, 2025



Backend Core
Team 5 May 9, 2025

● Bluesky API Integration
○ Uses atproto python library to take advantage of API calls

○ Post retrieval with search_posts() call

○ Attributes retrieved with post.”attribute”() calls

● Main Script Functions
○ Text pre-processing for model

○ Uses model for disaster post classification

○ Stores posts and user data in database

○ Post retrieval done in batches



Database
Team 5 May 9, 2025

● Database Used: DynamoDB
○ a fully managed NoSQL database provided by AWS, Chosen for seamless integration with other AWS 

services

○ Avoided setting up and managing separate database servers

○ Enabled direct backend API interaction without complex drivers

● Schema overview
○ DynamoDB database had two key tables:

i. Users Table: stores user ID, handle, display name, avatar URL, created_at

ii. Posts Table: stores post ID, timestamp, user ID, disaster type, confidence score, original text



Database
Team 5 May 9, 2025

● Storage Workflow:
○ Disaster posts retrieved from Bluesky API → preprocessed → passed to RoBERTa classification model

○ Once the predicted disaster type is assigned, the post is stored in DynamoDB (Posts Table)

○ Users are stored (if new) in the Users Table

● Storage Workflow:
○ Backend API exposes endpoints like /api/posts for frontend

○ API supports filtering by disaster type, date, language, confidence score

○ Once, the API retrieves filtered disaster data → served to frontend maps/charts



Backend 
Integrations & 

Reliability 

Team 5 May 9, 2025



Rate-Limiting
Team 5 May 9, 2025

● Bluesky Overall API Request Limits:
○ 3000 requests per 5 minutes

● Solution: Token Bucket Algorithm
○ Tokens are allotted and consumed per API call

○ If tokens are exhausted, the system waits

○ Tokens are refilled proportionally to elapsed time.



Backend Testing
Team 5 May 9, 2025

● Feed vs. Keyword Searching
○ Feeds search limited by curation

○ Keyword search retrieved 6.5x more posts than curated feeds.

● Confidence Threshold Sampling
○ Challenge: Limiting non-disaster posts

○ Solution:Sampled 400 posts in ranges from 0.80 to 0.95+

○ 0.95 threshold continues to yield enough posts



Frontend 
Development

Team 5 May 9, 2025



Frontend Foundation
Team 5 May 9, 2025

● Space Theme: Tweet as our satellite orbiting earth



Component development
Team 5 May 9, 2025

● Category button
● Map & Tweet list



Component development
Team 5 May 9, 2025

● Time chart



Component development
Team 5 May 9, 2025

● Help Section



Component development
Team 5 May 9, 2025

● Donut chart



Frontend - 
Mapping & Data 

Visualization

Team 5 May 9, 2025



Map Interface Development
Team 5 May 9, 2025

● Core mapping library: Leaflet.js
○ Dynamic loading of Leaflet with integrity checks for security

○ Responsive map interface with zoom, pan, and layer 

controls

○ Custom marker system using flag icons to represent alerts

● Key map functionalities
○ Interactive zoom and pan controls

○ Custom map markers for different disaster types

○ Toggle-able data layers (NWS Alerts, Wildfires, Hurricanes)

○ Auto-refresh capability (data updates every 5 minutes)

○ Responsive design works across desktop and mobile 

devices

http://leaflet.js


NWS Data Integration & Display
Team 5 May 9, 2025

● NWS data fetching:
○ Real-time data fetched from the National Weather Service API

○ URL: https://api.weather.gov/alerts/active

○ Filters for active and actual alerts only

● NWS Data Viewer component:
○ Comprehensive view of all NWS alerts with filtering options

○ Event type filtering to focus on specific disaster categories

○ Alert geometry statistics to track mappable vs. unmappable alerts

○ Expandable alert details with severity, urgency, and expiration information

○ Auto-refresh functionality to ensure data currency



Map Legend
Team 5 May 9, 2025

● Purpose and design:
○ Interactive legend with expandable/collapsible interface

○ Color-coded indicators for different alert severities and types

○ User-toggleable map layers for customized viewing

● How it helps users interpret map data:
○ Visually categorizes alerts by severity (Extreme, Severe, Moderate, Minor)

○ Color-coding system for different disaster types:

■ Floods: Blue (#1e90ff)

■ Tornadoes: Purple (#800080)

■ Wildfires/Smoke: Orange-red (#ff4500)

■ Winter/Snow/Ice: Light blue (#87ceeb)

■ Hurricanes/Tropical: Pink (#ff69b4)

■ Heat: Crimson (#dc143c)

○ Shows distribution percentages of each alert type

○ Includes timestamp information for data currency

○ Displays mapping statistics (how many alerts have coordinates vs. total)



Caching Implementation:
Team 5 May 9, 2025

● Purpose
○ Performance Improvement: 94% faster response times for repeated 

requests
○ Cost Reduction: Minimizes intensive database queries
○ User Experience: Delivers chart data with minimal loading times

● Where Caching is Implemented
○ Disaster Timeline Endpoint with parameterized caching
○ Daily and weekly time-based aggregations
○ Filtered disaster type views (fire, flood, earthquake, hurricane)
○ Various time ranges (7-day, 30-day spans)

● Why It Is Needed
○ Handles complex timeline calculations efficiently
○ Maintains consistent performance during peak usage
○ Reduces server load for common visualizations
○ Improves overall application responsiveness



Infrastructure & 
Deployment

Team 5 May 9, 2025



Cloud Services & Hosting
Team 5 May 9, 2025

● We developed a full-stack disaster management web application and deployed it on Amazon Web 

Services (AWS). The goal was to make the application publicly accessible, reliable, and easy to use, with a 

custom domain name.

● Cloud Platform Selection: AWS
○ It allowed easy integration with DynamoDB, enabling seamless backend database management without 

setting up servers.

○ AWS provided flexible hosting options (Lambda, S3, EC2), letting us choose the best fit for our 

application.

● Deployment Architecture: 
○ Amazon EC2 → Hosted frontend + backend on one server.

○ Amazon Route 53 → Managed twdisasterwatch.com. 

○ Amazon Linux OS for secure, optimized server.

http://twdisasterwatch.com


EC2 Setup & Configuration
Team 5 May 9, 2025

● Instance Selection: We deployed a t3.medium EC2 instance (2 vCPUs, 4 GB RAM) in the us-east-1 region 

to ensure sufficient resources for running both frontend and backend.

● Security Group Configuration: Opened ports 22 (SSH), 80 (HTTP), 443 (HTTPS), 3000 (frontend), and 

5000 (backend) to enable secure access and public traffic to the application.

● Project Code Deployment: Cloned the project repository from GitHub into the EC2 instance and organized 

it under /home/ec2-user/team5disasteranalysis for deployment.

● Public IP Configuration: Assigned and used the EC2 instance’s public IPv4 address to make the frontend 

and backend accessible over the internet.

● Port Testing & Validation: Verified public access to the frontend and backend by testing connections to 

ports 3000 (React) and 5000 (Flask) via browser.

○ http://52.23.167.1:3000 (frontend)

○ http://52.23.167.1:5000 (backend)



Domain & DNS Setup (Route 53)
Team 5 May 9, 2025

● Domain Registration with Route 53: We registered the custom domain twdisasterwatch directly through 

AWS Route 53, simplifying domain management within the AWS ecosystem.

● Hosted Zone Creation: Created a hosted zone in Route 53 to manage all DNS records associated with the 

domain, enabling complete control over domain resolution.

● A Record Configuration: Added an A Record to point the domain to the EC2 instance’s public IP, making 

the application accessible by domain name.

● CNAME Record for Subdomain: Configured a CNAME Record for the domain to redirect the subdomain to 

the main domain, ensuring both addresses lead to the same site.

● Domain Resolution Testing: Tested domain resolution by accessing the application via

○ http://twdisasterwatch.com

○ http://www.twdisasterwatch.com

http://twdisasterwatch.com/
http://www.twdisasterwatch.com


DEMO 
Team 5 May 9, 2025


